skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Milne, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosue; Paquette, Luc (Ed.)
    in mathematics education, and researchers often turn to advanced natural language processing (NLP) models to analyze classroom dialogues from multiple perspectives. However, utterance-level discourse analysis encounters two primary challenges: (1) multifunctionality, where a single utterance may serve multiple purposes that a single tag cannot capture, and (2) the exclusion of many utterances from domain-specific discourse move classifications, leading to their omission in feedback. To address these challenges, we proposed a multi-perspective discourse analysis that integrates domain-specific talk moves with dialogue act (using the flattened multi-functional SWBD-MASL schema with 43 tags) and discourse relation (applying Segmented Discourse Representation Theory with 16 relations). Our top-down analysis framework enables a comprehensive understanding of utterances that contain talk moves, as well as utterances that do not contain talk moves. This is applied to two mathematics education datasets: TalkMoves (teaching) and SAGA22 (tutoring). Through distributional unigram analysis, sequential talk move analysis, and multi-view deep dive, we discovered meaningful discourse patterns, and revealed the vital role of utterances without talk moves, demonstrating that these utterances, far from being mere fillers, serve crucial functions in guiding, acknowledging, and structuring classroom discourse. These insights underscore the importance of incorporating discourse relations and dialogue acts into AI-assisted education systems to enhance feedback and create more responsive learning environments. Our framework may prove helpful for providing human educator feedback, but also aiding in the development of AI agents that can effectively emulate the roles of both educators and students. 
    more » « less
    Free, publicly-accessible full text available July 21, 2026
  2. Rambow, Owen; Wanner, Leo; Apidianaki, Marianna; Al-Khalifa, Hend; Di_Eugenio, Barbara; Schockaert, Steven (Ed.)
    Human tutoring interventions play a crucial role in supporting student learning, improving academic performance, and promoting personal growth. This paper focuses on analyzing mathematics tutoring discourse using talk moves—a framework of dialogue acts grounded in Accountable Talk theory. However, scaling the collection, annotation, and analysis of extensive tutoring dialogues to develop machine learning models is a challenging and resource-intensive task. To address this, we present SAGA22, a compact dataset, and explore various modeling strategies, including dialogue context, speaker information, pretraining datasets, and further fine-tuning. By leveraging existing datasets and models designed for classroom teaching, our results demonstrate that supplementary pretraining on classroom data enhances model performance in tutoring settings, particularly when incorporating longer context and speaker information. Additionally, we conduct extensive ablation studies to underscore the challenges in talk move modeling. 
    more » « less
    Free, publicly-accessible full text available January 19, 2026
  3. Rambow, Owen; Wanner, Owen; Apidianaki, Marianna; Al-Khalifa, Hend; Di_Eugenio, Barbara; Schockaert, Steven (Ed.)
    Human tutoring interventions play a crucial role in supporting student learning, improving academic performance, and promoting personal growth. This paper focuses on analyzing mathematics tutoring discourse using talk moves—a framework of dialogue acts grounded in Accountable Talk theory. However, scaling the collection, annotation, and analysis of extensive tutoring dialogues to develop machine learning models is a challenging and resource-intensive task. To address this, we present SAGA22, a compact dataset, and explore various modeling strategies, including dialogue context, speaker information, pretraining datasets, and further fine-tuning. By leveraging existing datasets and models designed for classroom teaching, our results demonstrate that supplementary pretraining on classroom data enhances model performance in tutoring settings, particularly when incorporating longer context and speaker information. Additionally, we conduct extensive ablation studies to underscore the challenges in talk move modeling. 
    more » « less
    Free, publicly-accessible full text available January 19, 2026
  4. Free, publicly-accessible full text available January 6, 2026
  5. Boosting engagement with educational software has been promoted as a means of improving student performance. Various engagement factors have been explored, including choice, personalization, badges, bonuses, and competition. We examine two promising and relatively understudied manipulations from the realm of gambling: the nearwin effect and anticipation. The near-win effect occurs when an individual comes close to achieving a goal, e.g., getting two cherries and a lemon in a slot machine. Anticipation refers to the build-up of suspense as an outcome is revealed, e.g., revealing cherry-cherry-lemon in that order drives expectations of winning more than revealing lemon-cherrycherry. Gambling psychologists have long studied how near-wins affect engagement in pure-chance games but it is difficult to do the same in an educational context where outcomes are based on skill. In this paper, we manipulate the display of outcomes in a manner that allows us to introduce artificial near-wins largely independent of a student’s performance. In a study involving thousands of students using an online math tutor, we examine how this manipulation affects a behavioral measure of engagement—whether or not a student repeats a lesson. We find a near-win effect on engagement when the ‘win’ indicates to the student that they have attained critical competence on a lesson—the competence that allows them to continue to the next lesson. Nonetheless, when we experimentally induce near wins in a randomized controlled trial, we do not obtain a reliable effect of the near win. We discuss this mismatch of results in terms of the role of anticipation on making near wins effective. We conclude by describing manipulations that might increase the effect of near wins on engagement. 
    more » « less
  6. Personalized learning environments requiring the elicitation of a student’s knowledge state have inspired researchers to propose distinct models to understand that knowledge state. Recently, the spotlight has shone on comparisons between traditional, interpretable models such as Bayesian Knowledge Tracing (BKT) and complex, opaque neural network models such as Deep Knowledge Tracing (DKT). Although DKT appears to be a powerful predictive model, little effort has been expended to dissect the source of its strength. We begin with the observation that DKT differs from BKT along three dimensions: (1) DKT is a neural network with many free parameters, whereas BKT is a probabilistic model with few free parameters; (2) a single instance of DKT is used to model all skills in a domain, whereas a separate instance of BKT is constructed for each skill; and (3) the input to DKT interlaces practice from multiple skills, whereas the input to BKT is separated by skill. We tease apart these three dimensions by constructing versions of DKT which are trained on single skills and which are trained on sequences separated by skill. Exploration of three data sets reveals that dimensions (1) and (3) are critical; dimension (2) is not. Our investigation gives us insight into the structural regularities in the data that DKT is able to exploit but that BKT cannot. 
    more » « less